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Introduction

• System software is often programmed in C-like languages

o Another session has covered the security 

consequences and the raging attacker-defender race

• The purpose of this lecture is to give you a taste of some 

recent advances in this area:

o Systems-level compartimentalization mechanisms:

• We look at protected module architectures like the new Intel SGX

o Alternative safe systems-programming languages:

• We look at a promising candidate: the Rust language

o Advanced compiler-based countermeasures:

• Control-Flow Integrity

• Pointer-based checking
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Overview

• Protected module architectures

o Fine grained isolation at machine code level

o Supported in the recent Intel Skylake processors under 

the name Intel Software Guard eXtentions (Intel SGX)

• Safe systems programming languages

o Compiled languages with low-level control over memory, 

but with strong safety assurance

o Supported in the Rust programming language

• Advanced compiler based countermeasures

o Control-flow integrity (CFI)

o Pointer-based checking
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Problem statement

4
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I2

M3

I3

M4

I4

Consider a program consisting of a number of modules, and their dependencies.

C Java ML

In Header file (Roughly) Interfaces Signature

Mn C file (Roughly) Classes Structure / 

Functor



Problem statement

5

M1

I1

M2
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Suppose you have proven a (security) property of module M1 by modular reasoning.

E.g.:

• Some invariant holds on the module’s state

• Some data in the module remains confidential towards other modules

• The integrity of some data in the module is protected from other modules



Problem statement
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M1
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Suppose you have proven a (security) property of module M1 by modular reasoning.

E.g.:

• Some invariant holds on the module’s state

• Some data in the module remains confidential towards other modules

• The integrity of some data in the module is protected from other modules

KEY QUESTION:

What do you need to trust to be sure

that this property will hold at run time?



Problem statement
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You have to trust at least:

• Your reasoning (e.g. the soundness of the verification tool)

• The implementations of the unverified modules of your program

• The execution infrastructure

• Potentially “simple” : an interpreter on bare hardware

• In practice always complex, including compilers, operating systems, …
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…
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Problem statement
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Can we reduce the TCB to just the hardware, while maintaining

backward compatibility with legacy OS’s and applications?
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Problem statement
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Focus today only on:

• The creation and attestation of isolated / protected 

modules within a legacy system
• Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege, 

Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, Frank Piessens, 

Sancus: Low-cost trustworthy extensible networked devices with a zero-software trusted 

computing base, USENIX Security 2013
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buf[12..15]

0xbfffefdc saved base pointer

0xbfffefd8

0xbfffefd4 buf[8..11]

0xbfffefd0 buf[4..7]

0xbfffefcc buf[0..3]

0xbfffefc8 buf parameter

0xbfffefc4 fd parameter

0xbfffefc0 saved return address

0xbfffefbc saved base pointer

0xffffffff Top of memory…

Activation 

record

get_request(

)

0xbfffeff8

0x004f4e4d

0x4c4b4a49

0x48474645

0x44434241

0xbfffefcc

0x00000011

0x0804840a

0xbfffefdc

0x0804840a

0x08048406

0x08048402

0x080483fe

0x080483fa

0x080483f6

0x080483f2

…
0x8955c3c9

0xffffffe3

0xe8240489

0x08458b04

0x244489f0

0x458d18ec

0x83e58955

Machine code for 

process()

0x00000000 Bottom of memory…

0x08048000 …

Heap segment and

unmapped memory

Stack segment

Text segment

0xbfffefe0 saved return address0x08048424

0xbfffefe4 fd parameter0x00000011

ADDRESS CONTENTS

Machine code for 

get_request()

Machine code for 

main()

Kernel segments

SP

IP

Kernel segments

void get_request(int fd, char buf[]) {

read(fd,buf,16); 

} 

void process(int fd) { 

char buf[16]; 

get_request(fd,buf); 

// Process the request (code not shown)
} 

void main() { 

int fd ; 

// Initialize server, wait for a connection
// Accept connection, with file descriptor fd
// Finally, process the request:
process(fd); 

}

55 push   %ebp ; save base pointer
89 e5 mov %esp,%ebp ; set new base pointer
83 ec 18 sub     $0x18,%esp           ; allocate stack record
8d 45 f0 lea     -0x10(%ebp),%eax; put buf in %eax
89 44 24 04  mov %eax,0x4(%esp)    ; and push on the stack
8b 45 08 mov 0x8(%ebp),%eax ; put fd parameter in %eax
89 04 24 mov %eax,(%esp)          ; and push on the stack
e8 e3 ff ff ff call    0x80483ed ; call get_request
c9 leave  ; deallocate stack frame
c3 ret    ; return

(a) Program source code

(b) Machine code for process() function

(c) Run-time machine state on entering get_request()

Activation 

record

process()

Remember the run-time machine

state for executing C programs



static int tries_left = 3; 

static int PIN = 1234; 

static int secret = 666; 

int get_secret(int provided_pin) {

if (tries_left > 0) { 

if (PIN == provided_pin) {

tries_left = 3;

return secret;} 

else { tries_left-- ; return 0; }; } 

else return 0; }

#include<stdio.h>

#include "secret.h"

// includes for other modules

void main() {

// code for main functionality
…
}

(a) The secret module

(b) Other modules of the program (c) Run-time memory contents

int get_secret(int provided_pin)

secret.c

secret.h

Machine code 

for main and 

other modules

Machine code 

for secret 

module

Static data for all 

modules (including 

PIN, tries_left, …) 

Heap (global)

Stack (global)

Using PMA’s against memory scraping
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System model

• A network of low-end nodes N managed by an 

infrastructure provider IP

• Software providers SP deploy software modules 

SM on these nodes
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Attacker model and security properties

• Attackers can:

o Manipulate all the SW on nodes

o Control the network as a Dolev-Yao attacker

o NOT mess with the hardware

• In the presence of such attackers we guarantee:

o Software module isolation

o Remote attestation

o Secure remote communication

o [Secure linking]
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Protected software modules

• Standard SW modules, defining memory sections

o Public text section

• Code and constants

o Private data section

• Runtime data that needs to be protected

o Optional unprotected sections

• Layout of a module:

o The load addresses of public and private sections

• Identity of a module:

o Layout + contents of text section
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Isolation

• By PC-based 

access control:
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Key management

• Strictly symmetric key for performance reasons

• Three types of keys:
o Node master keys KN : shared between IP and N

o Provider keys KN,SP : shared between IP, SP and N

o Module keys KN,SP,SM : shared between IP, SP and SM on N

• Nodes are initialized with their master key on 

production

• All other keys are derived by means of key 

derivation functions
o KN,SP = kdf (KN , SP)

o KN,SP,SM = kdf(KN,SP , SM)
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Keys on the device managed by HW

• Only computed after enabling isolation

o protect layout, SP

• Only usable through special HW instructions

o mac-seal start-address, length, result-address
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Remote attestation and secure 

communication
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An example (simplified) scenario

• Node manages a sensor S by means

of an IP provided module SMS

• Various SP’s can install SM’s:

1. The SP contacts IP to get a KN,SP

2. SP creates SM, and calculates KN,SP,SM

3. SM is deployed on N using untrusted OS services

4. SM is protected with the instruction:

• protect layout, SP

• This creates KN,SP,SM and enables memory protection on SM

5. SP sends a request to SM (including a nonce No)

6. SM computes a response (possibly calling SMS and including No) 

and signs it using the instruction:

• MAC-seal

• This creates a MAC of the response using KN,SP,SM
20



Some implementation details

• Built as an extension of an open-source MSP430 

implementation

• Main changes:

o Memory access logic that implements PC-based access 

control

o Hardware implementations of:

• HMAC

• HKDF

• The Spongent 128/128/8 hash function

o The new instructions

• Available for download at:

o https://distrinet.cs.kuleuven.be/software/sancus/
21



Recap

• Sancus is a low-cost security architecture for 

networked embedded systems
o Module isolation though program-counter based access control

o Key management through a hierarchical symmetric-key ID-based 

key derivation

o Remote attestation and secure communication by hardware-

guarded access to keys

o [Secure linking]

o [A secure compiler supporting the development of modules]

• Intel’s recent Skylake processors include a similar 

security architecture, called Software Guard 

eXtensions (Intel SGX)
22



static int tries_left = 3; 

static int PIN = 1234; 

static int secret = 666; 

int get_secret(int provided_pin) {

if (tries_left > 0) { 

if (PIN == provided_pin) {

tries_left = 3;

return secret;} 

else { tries_left-- ; return 0; }; } 

else return 0; }

#include<stdio.h>

#include "secret.h"

// includes for other modules

void main() {

// code for main functionality
…
}

(a) The secret module

(b) Other modules of the program (c) Run-time memory contents
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Machine code 

for main and 
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PIN, tries_left, …) 
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Stack (global)

Using PMA’s against memory scraping
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static int tries_left = 3; 

static int PIN = 1234; 

static int secret = 666; 

int get_secret(int get_pin()) {

if (tries_left > 0) { 

if (PIN == get_pin()) {

tries_left = 3;

return secret;} 

else { tries_left-- ; return 0; }; } 

else return 0; }

int get_secret(int get_pin())

secret.c

secret.h

The need for secure compilation



Conclusions

• Protected Module Architectures are a very promising new 

system security technology

o They essentially allow the dynamic creation of Trusted 

Execution Environments (TEEs) within a legacy, 

untrusted infrastructure.

• But many interesting questions remain:

o Secure compilation to such architectures

o Providing secure persistent storage

o Making sure attackers can not use them to hide 

malware

o …



Overview

• Countermeasures of the future:

o Protected module architectures

• Fine grained isolation at machine code level

• Supported in the most recent Intel Skylake processors under the 

name Intel Software Guard eXtentions (Intel SGX)

o Safe systems programming languages

• Compiled languages with low-level control over memory, but with 

strong safety assurance

• Supported in the Rust programming language

o Advanced compiler based countermeasures

• Control-flow integrity (CFI)

• Pointer-based checking
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The trade-off between safety and low-level 

control

• From a security point of view, safe languages like Java, 

C#, Scala, … are significantly better

• Why has C not disappeared?

• There are several reasons for this:

o C is very “light-weight”

• Very good performance

• But also: no need for a “runtime” or “virtual machine”

o C gives the programmer control over low-level details

• What is allocated on stack versus heap

• How are data structures laid out in memory

• Rust is a new contender in this arena





Our focus

• Rust has many interesting features

• But we focus on its most innovative / most complex 

feature:

o Ownership and borrowing

• This is an important new approach to avoiding temporal 

memory safety errors without garbage collection

• It also addresses important concurrency related errors, but 

we do not focus on this



buf[12..15]

0xbfffefdc saved base pointer

0xbfffefd8

0xbfffefd4 buf[8..11]

0xbfffefd0 buf[4..7]

0xbfffefcc buf[0..3]

0xbfffefc8 buf parameter

0xbfffefc4 fd parameter

0xbfffefc0 saved return address

0xbfffefbc saved base pointer

0xffffffff Top of memory…

Activation 

record

get_request(

)

0xbfffeff8

0x004f4e4d

0x4c4b4a49

0x48474645

0x44434241

0xbfffefcc

0x00000011

0x0804840a

0xbfffefdc

0x0804840a
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0x080483f2

…
0x8955c3c9

0xffffffe3
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0x244489f0

0x458d18ec

0x83e58955

Machine code for 

process()

0x00000000 Bottom of memory…

0x08048000 …

Heap segment and

unmapped memory

Stack segment

Text segment

0xbfffefe0 saved return address0x08048424

0xbfffefe4 fd parameter0x00000011

ADDRESS CONTENTS

Machine code for 

get_request()

Machine code for 

main()

Kernel segments

SP

IP

Kernel segments

void get_request(int fd, char buf[]) {

read(fd,buf,16); 

} 

void process(int fd) { 

char buf[16]; 

get_request(fd,buf); 

// Process the request (code not shown)
} 

void main() { 

int fd ; 

// Initialize server, wait for a connection
// Accept connection, with file descriptor fd
// Finally, process the request:
process(fd); 

}

55 push   %ebp ; save base pointer
89 e5 mov %esp,%ebp ; set new base pointer
83 ec 18 sub     $0x18,%esp           ; allocate stack record
8d 45 f0 lea     -0x10(%ebp),%eax; put buf in %eax
89 44 24 04  mov %eax,0x4(%esp)    ; and push on the stack
8b 45 08 mov 0x8(%ebp),%eax ; put fd parameter in %eax
89 04 24 mov %eax,(%esp)          ; and push on the stack
e8 e3 ff ff ff call    0x80483ed ; call get_request
c9 leave  ; deallocate stack frame
c3 ret    ; return

(a) Program source code

(b) Machine code for process() function

(c) Run-time machine state on entering get_request()

Activation 

record

process()

What part of memory should be 

writable by the program?
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Machine code for 

get_request()

Machine code for 

main()

Kernel segments

SP
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Kernel segments

void get_request(int fd, char buf[]) {

read(fd,buf,16); 

} 

void process(int fd) { 

char buf[16]; 

get_request(fd,buf); 

// Process the request (code not shown)
} 

void main() { 

int fd = 0x11; 

// Initialize server, wait for a connection
// Accept connection, with file descriptor fd
// Finally, process the request:
process(fd); 

}

55 push   %ebp ; save base pointer
89 e5 mov %esp,%ebp ; set new base pointer
83 ec 18 sub     $0x18,%esp           ; allocate stack record
8d 45 f0 lea     -0x10(%ebp),%eax; put buf in %eax
89 44 24 04  mov %eax,0x4(%esp)    ; and push on the stack
8b 45 08 mov 0x8(%ebp),%eax ; put fd parameter in %eax
89 04 24 mov %eax,(%esp)          ; and push on the stack
e8 e3 ff ff ff call    0x80483ed ; call get_request
c9 leave  ; deallocate stack frame
c3 ret    ; return

(a) Program source code

(b) Machine code for process() function

(c) Run-time machine state on entering get_request()

Activation 

record

process()

What part of memory should be 

writable by the program?



Essentially, only 4 ways things can go wrong

• Spatial memory safety errors: a blob of allocated 

memory is accessed out of bounds

• Temporal memory safety errors: a blob of memory is 

accessed after it has been deallocated

• Pointer forging: creating an invalid pointer value

o By invalid casts

o By use of uninitialized memory

• Unsafe primitive API functions:

o Like C’s printf() function



Spatial memory safety

• Examples: indexing an array, indexing a struct, pointer 

arithmetic

• How could the compiler protect against spatial memory 

safety errors?



Enforcing spatial memory safety

• Through type checking for structs and arrays with statically 

known bounds

o E.g. Java type system will make sure that you can not 

access a non-existing field of an object

• Through run-time bounds checking otherwise

o E.g. Java throws ArrayIndexOutOfBoundsException

o E.g. “Fat” pointers in C or C++



Temporal memory safety

• How long are pointers valid?

This depends on how the pointer is created.



A simple example



A simple example
Stack Heap
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A simple example
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A simple example
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A simple example
Stack Heap

data

4

4

len

cap
10

*

Output:

0

10

10

1

2

3

i0

10

1

2

3
Temporal memory safety error



Real heap looks more complicated…
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Enforcing temporal memory safety

• Allocate everything on the heap, and do garbage 

collection:

o Programmer can not do explicit deallocation

• I.e. no free()

o At regular intervals, the program will be halted and the 

run-time system will clean up unused memory

• Basic idea: check what memory is reachable from the current 

program state, and deallocate all the rest

• Many different strategies to implement this with different pros and 

cons

• Important disadvantages for systems programming:

o Less precise control over memory

o Unpredictable timing



Enforcing temporal memory safety

• New approach: ownership types and borrowing

• Basic idea:

o There is at all times a unique owning pointer to each 

allocated blob of memory

o Memory is deallocated when the owning pointer 

disappears

• Because it goes out of scope

• Or because it is overwritten

• Or because it was part of a data structure that is being 

deallocated

• We discuss the implementation of this idea in Rust 



Memory management in Rust

• Programmer controls:

o At what time memory is allocated

o And where it is allocated (stack / heap)

• Deallocated when owner goes out of scope

1 1

Stack Heap

x

y



No use after free is possible

• There was only a single pointer, and it has gone out of 

scope



Move semantics

• Pointers are not copied but moved

2

Stack Heap

y



Move semantics

• Pointers are not copied but moved
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Stack Heap
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Move semantics

• Pointers are not copied but moved

MOVED

Stack Heap

x

y

1



Move semantics

• Pointers are not copied but moved

o Hence: there is always a unique owning pointer

Stack Heap

y

1



Pointers move into functions too

• Ownership moves from argument to formal parameter

• So when is the allocated memory freed in the program 

below?

Stack Heap

x 1
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Pointers move into functions too

• Ownership moves from argument to formal parameter

• So when is the allocated memory freed in the program 

below?

MOVED

Stack Heap

x



Pointers can also move into Boxes and structs

Stack Heap

x 1



Pointers can also move into Boxes and structs

MOVED

Stack Heap

x 1

y



Pointers can also move into Boxes and structs

MOVED

Stack Heap

x 1
MOVEDy

z



Enforcing unique ownership simplifies the 

heap

• The heap is a forest (set of trees), with allocated blobs of 

memory as nodes, and owning references as arrows.

• Roots of the trees are on the stack: 

o local variables of Box type

• If a local variable goes out of scope, that tree gets 

deallocated

o We know that there are no other owners, because of 

uniqueness of ownership

• Uniqueness of ownership is maintained with the move 

semantics of pointers



Borrowing

• Move semantics is sometimes too limiting / annoying

• Rust supports “borrowing” of references to address this

ERROR



Borrowing

Stack Heap

x 1



Borrowing
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x
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Borrowing

Stack Heap

x

y

1



Borrowing rules

• To avoid introducing temporal safety errors, borrowing and 

ownership follow some rules:

o The lifetime of a borrow should always be included in 

the lifetime of the owner from which it is borrowed

• Otherwise, if the owner dies, the borrowed reference would be 

dangling



Borrowing should also forbid mutation

Stack Heap

data 1

1

1

len

cap



Borrowing should also forbid mutation

Stack Heap
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Borrowing should also forbid mutation

Stack Heap
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Borrowing should also forbid mutation

Stack Heap

data 1

2

2

len

cap

first 1

2



Borrowing rules

• Rust supports borrowing:

o Either: an arbitrary number of immutable references

o Or: a single mutable reference

• To ensure safety, Rust ensures:

o Modification through the owner is disallowed while 

borrows are outstanding

o Lifetimes of borrowed references are always strictly 

included in the lifetime of the owner



Summary: Ownership and borrowing

• Together these concepts:

o Can guarantee temporal memory safety statically

• By ruling out simultaneous aliasing + mutation

o Allow relatively flexible pointer manipulating programs

• Many advantages:

o No need for a run-time (no garbage collection)

o Also helps in avoiding data races (concurrency errors)

• Some disadvantages:

o Non-trivial to use

o Not as flexible as C



The Rust programming language

• Is one of the fastest growing languages at the moment

• The language has many other interesting features that we 

did not discuss

o Pattern matching

o Traits

o Generics

o …

• See:

o https://www.rust-lang.org/



Overview

• Countermeasures of the future:

o Protected module architectures

• Fine grained isolation at machine code level

• Supported in the most recent Intel Skylake processors under the 

name Intel Software Guard eXtentions (Intel SGX)

o Safe systems programming languages

• Compiled languages with low-level control over memory, but with 

strong safety assurance

• Supported in the Rust programming language

o Advanced compiler based countermeasures

• Control-flow integrity (CFI)

• Pointer-based checking
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Control-flow integrity

• Most low-level attacks break the control flow as it is 

encoded in the source program

o E.g. At the source code level, one always expects a 

function to return to its call site

• The idea of control-flow integrity is to instrument the code 

to check the “sanity” of the control-flow at runtime
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Remember the heap-based buffer overflow

• Example vulnerable program:
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Example CFI at the source level

• The following code explicitly checks whether the cmp 

function pointer points to one of two known functions:

77



General CFI

• In general, similar sanity checks can be done on any 

computed control flow transfer

o Mainly: calls through function pointers, and returns

• The challenge is to do this 

o Efficiently

o And precisely

• The original CFI determined a Control Flow Graph of the 

program, and then inserted label-based checks



Example CFI with labels
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• Supported in the most recent Intel Skylake processors under the 
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Pointer-based checking for C

• Challenging, because:

o For compatibility reasons, you should not change the 

size of a pointer (so no fat pointers)

o Performance overhead should be low

• The most promising approach uses metadata about 

pointers maintained in a disjoint metadata space

• For a detailed discussion, see:

o Santosh Nagarakatte, Milo M. K. Martin, Steve Zdancewic: Everything You 

Want to Know About Pointer-Based Checking. SNAPL 2015



How does it work?

• For each pointer (i.e. each memory address), we maintain 

metadata at run-time in a separate area of memory, e.g.:

o Base and bound information: what is the size of the 

memory blob that this pointer is valid for?

o Lock and key information to detect temporal safety 

issues

• Intel Memory Protection Extensions (Intel MPX) provides 

hardware support for maintaining such metadata

o Currently only base and bound





Performance costs

• Software-only implementations:

o From a few percent up to 250% execution time 

overhead

• Hardware-supported implementations:

o Approximately 20% execution time overhead



Conclusions

• Vulnerabilities in infrastructural systems software (operating systems, 

servers, middleware) have been an important concern for security for 

decades

• Memory safety related vulnerabilities are one of the most important 

categories of vulnerabilities in systems software

• Decades of research are resulting in some interesting new approaches 

to:

o Protect application modules from infrastructural software

o Prevent memory safety vulnerabilities through safe systems 

programming language

o Comprehensively detect triggering of memory safety vulnerabilities 

at run-time for C with reasonable performance

• If you are interested in following these developments more closely, 

come talk to me about possible collaborations!
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