
Recent Advances in

System Software

Security

Prof. Frank PIESSENS

SECAPPDEV 2016

Introduction

• System software is often programmed in C-like languages

o Another session has covered the security

consequences and the raging attacker-defender race

• The purpose of this lecture is to give you a taste of some

recent advances in this area:

o Systems-level compartimentalization mechanisms:

• We look at protected module architectures like the new Intel SGX

o Alternative safe systems-programming languages:

• We look at a promising candidate: the Rust language

o Advanced compiler-based countermeasures:

• Control-Flow Integrity

• Pointer-based checking

2

Overview

• Protected module architectures

o Fine grained isolation at machine code level

o Supported in the recent Intel Skylake processors under

the name Intel Software Guard eXtentions (Intel SGX)

• Safe systems programming languages

o Compiled languages with low-level control over memory,

but with strong safety assurance

o Supported in the Rust programming language

• Advanced compiler based countermeasures

o Control-flow integrity (CFI)

o Pointer-based checking

3

Problem statement

4

M1

I1

M2

I2

M3

I3

M4

I4

Consider a program consisting of a number of modules, and their dependencies.

C Java ML

In Header file (Roughly) Interfaces Signature

Mn C file (Roughly) Classes Structure /

Functor

Problem statement

5

M1

I1

M2

I2

M3

I3

M4

I4

Suppose you have proven a (security) property of module M1 by modular reasoning.

E.g.:

• Some invariant holds on the module’s state

• Some data in the module remains confidential towards other modules

• The integrity of some data in the module is protected from other modules

Problem statement

6

M1

I1

M2

I2

M3

I3

M4

I4

Suppose you have proven a (security) property of module M1 by modular reasoning.

E.g.:

• Some invariant holds on the module’s state

• Some data in the module remains confidential towards other modules

• The integrity of some data in the module is protected from other modules

KEY QUESTION:

What do you need to trust to be sure

that this property will hold at run time?

Problem statement

7

M1

I1

M2

I2

M3

I3

M4

I4

You have to trust at least:

• Your reasoning (e.g. the soundness of the verification tool)

• The implementations of the unverified modules of your program

• The execution infrastructure

• Potentially “simple” : an interpreter on bare hardware

• In practice always complex, including compilers, operating systems, …

Compile

M1’

M2’

M3’

M4’

RL

OS

HW

…

TRUST

Problem statement

8

M1

I1

M2

I2

M3

I3

M4

I4

Can we reduce the TCB to just the hardware, while maintaining

backward compatibility with legacy OS’s and applications?

Compile

M1’

M2’

M3’

M4’

RL

OS

HW

…

TRUST

Problem statement

9

M1

I1

M2

I2

M3

I3

M4

I4

Focus today only on:

• The creation and attestation of isolated / protected

modules within a legacy system
• Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege,

Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, Frank Piessens,

Sancus: Low-cost trustworthy extensible networked devices with a zero-software trusted

computing base, USENIX Security 2013

Compile

M1’

M2’

M3’

M4’

RL

OS

HW

…

TRUST

buf[12..15]

0xbfffefdc saved base pointer

0xbfffefd8

0xbfffefd4 buf[8..11]

0xbfffefd0 buf[4..7]

0xbfffefcc buf[0..3]

0xbfffefc8 buf parameter

0xbfffefc4 fd parameter

0xbfffefc0 saved return address

0xbfffefbc saved base pointer

0xffffffff Top of memory…

Activation

record

get_request(

)

0xbfffeff8

0x004f4e4d

0x4c4b4a49

0x48474645

0x44434241

0xbfffefcc

0x00000011

0x0804840a

0xbfffefdc

0x0804840a

0x08048406

0x08048402

0x080483fe

0x080483fa

0x080483f6

0x080483f2

…
0x8955c3c9

0xffffffe3

0xe8240489

0x08458b04

0x244489f0

0x458d18ec

0x83e58955

Machine code for

process()

0x00000000 Bottom of memory…

0x08048000 …

Heap segment and

unmapped memory

Stack segment

Text segment

0xbfffefe0 saved return address0x08048424

0xbfffefe4 fd parameter0x00000011

ADDRESS CONTENTS

Machine code for

get_request()

Machine code for

main()

Kernel segments

SP

IP

Kernel segments

void get_request(int fd, char buf[]) {

read(fd,buf,16);

}

void process(int fd) {

char buf[16];

get_request(fd,buf);

// Process the request (code not shown)
}

void main() {

int fd ;

// Initialize server, wait for a connection
// Accept connection, with file descriptor fd
// Finally, process the request:
process(fd);

}

55 push %ebp ; save base pointer
89 e5 mov %esp,%ebp ; set new base pointer
83 ec 18 sub $0x18,%esp ; allocate stack record
8d 45 f0 lea -0x10(%ebp),%eax; put buf in %eax
89 44 24 04 mov %eax,0x4(%esp) ; and push on the stack
8b 45 08 mov 0x8(%ebp),%eax ; put fd parameter in %eax
89 04 24 mov %eax,(%esp) ; and push on the stack
e8 e3 ff ff ff call 0x80483ed ; call get_request
c9 leave ; deallocate stack frame
c3 ret ; return

(a) Program source code

(b) Machine code for process() function

(c) Run-time machine state on entering get_request()

Activation

record

process()

Remember the run-time machine

state for executing C programs

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret(int provided_pin) {

if (tries_left > 0) {

if (PIN == provided_pin) {

tries_left = 3;

return secret;}

else { tries_left-- ; return 0; }; }

else return 0; }

#include<stdio.h>

#include "secret.h"

// includes for other modules

void main() {

// code for main functionality
…
}

(a) The secret module

(b) Other modules of the program (c) Run-time memory contents

int get_secret(int provided_pin)

secret.c

secret.h

Machine code

for main and

other modules

Machine code

for secret

module

Static data for all

modules (including

PIN, tries_left, …)

Heap (global)

Stack (global)

Using PMA’s against memory scraping

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret(int provided_pin) {

if (tries_left > 0) {

if (PIN == provided_pin) {

tries_left = 3;

return secret;}

else { tries_left-- ; return 0; }; }

else return 0; }

#include<stdio.h>

#include "secret.h"

// includes for other modules

void main() {

// code for main functionality
…
}

(a) The secret module

(b) Other modules of the program (c) Run-time memory contents

int get_secret(int provided_pin)

secret.c

secret.h

Machine code

for main and

other modules

Machine code

for secret

module

Static data for all

modules (including

PIN, tries_left, …)

Heap (global)

Stack (global)

Using PMA’s against memory scraping

…

Machine code

for main and

other modules

Machine code

for secret module

Static data for

secret module

Heap (global)

Stack (global)

Static data for

other modules

Protected

Module

Entry point

System model

• A network of low-end nodes N managed by an

infrastructure provider IP

• Software providers SP deploy software modules

SM on these nodes

13

Attacker model and security properties

• Attackers can:

o Manipulate all the SW on nodes

o Control the network as a Dolev-Yao attacker

o NOT mess with the hardware

• In the presence of such attackers we guarantee:

o Software module isolation

o Remote attestation

o Secure remote communication

o [Secure linking]

14

Protected software modules

• Standard SW modules, defining memory sections

o Public text section

• Code and constants

o Private data section

• Runtime data that needs to be protected

o Optional unprotected sections

• Layout of a module:

o The load addresses of public and private sections

• Identity of a module:

o Layout + contents of text section

15

Isolation

• By PC-based

access control:

16

Key management

• Strictly symmetric key for performance reasons

• Three types of keys:
o Node master keys KN : shared between IP and N

o Provider keys KN,SP : shared between IP, SP and N

o Module keys KN,SP,SM : shared between IP, SP and SM on N

• Nodes are initialized with their master key on

production

• All other keys are derived by means of key

derivation functions
o KN,SP = kdf (KN , SP)

o KN,SP,SM = kdf(KN,SP , SM)

17

Keys on the device managed by HW

• Only computed after enabling isolation

o protect layout, SP

• Only usable through special HW instructions

o mac-seal start-address, length, result-address

18

Remote attestation and secure

communication

19

An example (simplified) scenario

• Node manages a sensor S by means

of an IP provided module SMS

• Various SP’s can install SM’s:

1. The SP contacts IP to get a KN,SP

2. SP creates SM, and calculates KN,SP,SM

3. SM is deployed on N using untrusted OS services

4. SM is protected with the instruction:

• protect layout, SP

• This creates KN,SP,SM and enables memory protection on SM

5. SP sends a request to SM (including a nonce No)

6. SM computes a response (possibly calling SMS and including No)

and signs it using the instruction:

• MAC-seal

• This creates a MAC of the response using KN,SP,SM
20

Some implementation details

• Built as an extension of an open-source MSP430

implementation

• Main changes:

o Memory access logic that implements PC-based access

control

o Hardware implementations of:

• HMAC

• HKDF

• The Spongent 128/128/8 hash function

o The new instructions

• Available for download at:

o https://distrinet.cs.kuleuven.be/software/sancus/
21

Recap

• Sancus is a low-cost security architecture for

networked embedded systems
o Module isolation though program-counter based access control

o Key management through a hierarchical symmetric-key ID-based

key derivation

o Remote attestation and secure communication by hardware-

guarded access to keys

o [Secure linking]

o [A secure compiler supporting the development of modules]

• Intel’s recent Skylake processors include a similar

security architecture, called Software Guard

eXtensions (Intel SGX)
22

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret(int provided_pin) {

if (tries_left > 0) {

if (PIN == provided_pin) {

tries_left = 3;

return secret;}

else { tries_left-- ; return 0; }; }

else return 0; }

#include<stdio.h>

#include "secret.h"

// includes for other modules

void main() {

// code for main functionality
…
}

(a) The secret module

(b) Other modules of the program (c) Run-time memory contents

int get_secret(int provided_pin)

secret.c

secret.h

Machine code

for main and

other modules

Machine code

for secret

module

Static data for all

modules (including

PIN, tries_left, …)

Heap (global)

Stack (global)

Using PMA’s against memory scraping

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret(int provided_pin) {

if (tries_left > 0) {

if (PIN == provided_pin) {

tries_left = 3;

return secret;}

else { tries_left-- ; return 0; }; }

else return 0; }

#include<stdio.h>

#include "secret.h"

// includes for other modules

void main() {

// code for main functionality
…
}

(a) The secret module

(b) Other modules of the program (c) Run-time memory contents

int get_secret(int provided_pin)

secret.c

secret.h

Machine code

for main and

other modules

Machine code

for secret

module

Static data for all

modules (including

PIN, tries_left, …)

Heap (global)

Stack (global)

Using PMA’s against memory scraping

…

Machine code

for main and

other modules

Machine code

for secret module

Static data for

secret module

Heap (global)

Stack (global)

Static data for

other modules

Protected

Module

Entry point

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret(int get_pin()) {

if (tries_left > 0) {

if (PIN == get_pin()) {

tries_left = 3;

return secret;}

else { tries_left-- ; return 0; }; }

else return 0; }

int get_secret(int get_pin())

secret.c

secret.h

The need for secure compilation

Conclusions

• Protected Module Architectures are a very promising new

system security technology

o They essentially allow the dynamic creation of Trusted

Execution Environments (TEEs) within a legacy,

untrusted infrastructure.

• But many interesting questions remain:

o Secure compilation to such architectures

o Providing secure persistent storage

o Making sure attackers can not use them to hide

malware

o …

Overview

• Countermeasures of the future:

o Protected module architectures

• Fine grained isolation at machine code level

• Supported in the most recent Intel Skylake processors under the

name Intel Software Guard eXtentions (Intel SGX)

o Safe systems programming languages

• Compiled languages with low-level control over memory, but with

strong safety assurance

• Supported in the Rust programming language

o Advanced compiler based countermeasures

• Control-flow integrity (CFI)

• Pointer-based checking

27

The trade-off between safety and low-level

control

• From a security point of view, safe languages like Java,

C#, Scala, … are significantly better

• Why has C not disappeared?

• There are several reasons for this:

o C is very “light-weight”

• Very good performance

• But also: no need for a “runtime” or “virtual machine”

o C gives the programmer control over low-level details

• What is allocated on stack versus heap

• How are data structures laid out in memory

• Rust is a new contender in this arena

Our focus

• Rust has many interesting features

• But we focus on its most innovative / most complex

feature:

o Ownership and borrowing

• This is an important new approach to avoiding temporal

memory safety errors without garbage collection

• It also addresses important concurrency related errors, but

we do not focus on this

buf[12..15]

0xbfffefdc saved base pointer

0xbfffefd8

0xbfffefd4 buf[8..11]

0xbfffefd0 buf[4..7]

0xbfffefcc buf[0..3]

0xbfffefc8 buf parameter

0xbfffefc4 fd parameter

0xbfffefc0 saved return address

0xbfffefbc saved base pointer

0xffffffff Top of memory…

Activation

record

get_request(

)

0xbfffeff8

0x004f4e4d

0x4c4b4a49

0x48474645

0x44434241

0xbfffefcc

0x00000011

0x0804840a

0xbfffefdc

0x0804840a

0x08048406

0x08048402

0x080483fe

0x080483fa

0x080483f6

0x080483f2

…
0x8955c3c9

0xffffffe3

0xe8240489

0x08458b04

0x244489f0

0x458d18ec

0x83e58955

Machine code for

process()

0x00000000 Bottom of memory…

0x08048000 …

Heap segment and

unmapped memory

Stack segment

Text segment

0xbfffefe0 saved return address0x08048424

0xbfffefe4 fd parameter0x00000011

ADDRESS CONTENTS

Machine code for

get_request()

Machine code for

main()

Kernel segments

SP

IP

Kernel segments

void get_request(int fd, char buf[]) {

read(fd,buf,16);

}

void process(int fd) {

char buf[16];

get_request(fd,buf);

// Process the request (code not shown)
}

void main() {

int fd ;

// Initialize server, wait for a connection
// Accept connection, with file descriptor fd
// Finally, process the request:
process(fd);

}

55 push %ebp ; save base pointer
89 e5 mov %esp,%ebp ; set new base pointer
83 ec 18 sub $0x18,%esp ; allocate stack record
8d 45 f0 lea -0x10(%ebp),%eax; put buf in %eax
89 44 24 04 mov %eax,0x4(%esp) ; and push on the stack
8b 45 08 mov 0x8(%ebp),%eax ; put fd parameter in %eax
89 04 24 mov %eax,(%esp) ; and push on the stack
e8 e3 ff ff ff call 0x80483ed ; call get_request
c9 leave ; deallocate stack frame
c3 ret ; return

(a) Program source code

(b) Machine code for process() function

(c) Run-time machine state on entering get_request()

Activation

record

process()

What part of memory should be

writable by the program?

buf[12..15]

0xbfffefdc saved base pointer

0xbfffefd8

0xbfffefd4 buf[8..11]

0xbfffefd0 buf[4..7]

0xbfffefcc buf[0..3]

0xbfffefc8 buf parameter

0xbfffefc4 fd parameter

0xbfffefc0 saved return address

0xbfffefbc saved base pointer

0xffffffff Top of memory…

Activation

record

get_request(

)

0xbfffeff8

0x004f4e4d

0x4c4b4a49

0x48474645

0x44434241

0xbfffefcc

0x00000011

0x0804840a

0xbfffefdc

0x0804840a

0x08048406

0x08048402

0x080483fe

0x080483fa

0x080483f6

0x080483f2

…
0x8955c3c9

0xffffffe3

0xe8240489

0x08458b04

0x244489f0

0x458d18ec

0x83e58955

Machine code for

process()

0x00000000 Bottom of memory…

0x08048000 …

Heap segment and

unmapped memory

Stack segment

Text segment

0xbfffefe0 saved return address0x08048424

0xbfffefe4 fd parameter0x00000011

ADDRESS CONTENTS

Machine code for

get_request()

Machine code for

main()

Kernel segments

SP

IP

Kernel segments

void get_request(int fd, char buf[]) {

read(fd,buf,16);

}

void process(int fd) {

char buf[16];

get_request(fd,buf);

// Process the request (code not shown)
}

void main() {

int fd = 0x11;

// Initialize server, wait for a connection
// Accept connection, with file descriptor fd
// Finally, process the request:
process(fd);

}

55 push %ebp ; save base pointer
89 e5 mov %esp,%ebp ; set new base pointer
83 ec 18 sub $0x18,%esp ; allocate stack record
8d 45 f0 lea -0x10(%ebp),%eax; put buf in %eax
89 44 24 04 mov %eax,0x4(%esp) ; and push on the stack
8b 45 08 mov 0x8(%ebp),%eax ; put fd parameter in %eax
89 04 24 mov %eax,(%esp) ; and push on the stack
e8 e3 ff ff ff call 0x80483ed ; call get_request
c9 leave ; deallocate stack frame
c3 ret ; return

(a) Program source code

(b) Machine code for process() function

(c) Run-time machine state on entering get_request()

Activation

record

process()

What part of memory should be

writable by the program?

Essentially, only 4 ways things can go wrong

• Spatial memory safety errors: a blob of allocated

memory is accessed out of bounds

• Temporal memory safety errors: a blob of memory is

accessed after it has been deallocated

• Pointer forging: creating an invalid pointer value

o By invalid casts

o By use of uninitialized memory

• Unsafe primitive API functions:

o Like C’s printf() function

Spatial memory safety

• Examples: indexing an array, indexing a struct, pointer

arithmetic

• How could the compiler protect against spatial memory

safety errors?

Enforcing spatial memory safety

• Through type checking for structs and arrays with statically

known bounds

o E.g. Java type system will make sure that you can not

access a non-existing field of an object

• Through run-time bounds checking otherwise

o E.g. Java throws ArrayIndexOutOfBoundsException

o E.g. “Fat” pointers in C or C++

Temporal memory safety

• How long are pointers valid?

This depends on how the pointer is created.

A simple example

A simple example
Stack Heap

data

0

2

len

cap
*

*

A simple example
Stack Heap

data

1

2

len

cap
0

*

A simple example
Stack Heap

data

1

2

len

cap
0

*

Output:

0

A simple example
Stack Heap

data

1

2

len

cap
10

*

Output:

0

i0

A simple example
Stack Heap

data

1

2

len

cap
10

*

Output:

0

10

i0

A simple example
Stack Heap

data

4

4

len

cap
10

*

Output:

0

10

i0

10

1

2

3

A simple example
Stack Heap

data

4

4

len

cap
10

*

Output:

0

10

10

1

2

3

i0

10

1

2

3

A simple example
Stack Heap

data

4

4

len

cap
10

*

Output:

0

10

10

1

2

3

i0

10

1

2

3
Temporal memory safety error

Real heap looks more complicated…

46

Enforcing temporal memory safety

• Allocate everything on the heap, and do garbage

collection:

o Programmer can not do explicit deallocation

• I.e. no free()

o At regular intervals, the program will be halted and the

run-time system will clean up unused memory

• Basic idea: check what memory is reachable from the current

program state, and deallocate all the rest

• Many different strategies to implement this with different pros and

cons

• Important disadvantages for systems programming:

o Less precise control over memory

o Unpredictable timing

Enforcing temporal memory safety

• New approach: ownership types and borrowing

• Basic idea:

o There is at all times a unique owning pointer to each

allocated blob of memory

o Memory is deallocated when the owning pointer

disappears

• Because it goes out of scope

• Or because it is overwritten

• Or because it was part of a data structure that is being

deallocated

• We discuss the implementation of this idea in Rust

Memory management in Rust

• Programmer controls:

o At what time memory is allocated

o And where it is allocated (stack / heap)

• Deallocated when owner goes out of scope

1 1

Stack Heap

x

y

No use after free is possible

• There was only a single pointer, and it has gone out of

scope

Move semantics

• Pointers are not copied but moved

2

Stack Heap

y

Move semantics

• Pointers are not copied but moved

2

Stack Heap

x

y

1

Move semantics

• Pointers are not copied but moved

MOVED

Stack Heap

x

y

1

Move semantics

• Pointers are not copied but moved

o Hence: there is always a unique owning pointer

Stack Heap

y

1

Pointers move into functions too

• Ownership moves from argument to formal parameter

• So when is the allocated memory freed in the program

below?

Stack Heap

x 1

Pointers move into functions too

• Ownership moves from argument to formal parameter

• So when is the allocated memory freed in the program

below?

MOVED

Stack Heap

x 1

y

Pointers move into functions too

• Ownership moves from argument to formal parameter

• So when is the allocated memory freed in the program

below?

MOVED

Stack Heap

x

Pointers can also move into Boxes and structs

Stack Heap

x 1

Pointers can also move into Boxes and structs

MOVED

Stack Heap

x 1

y

Pointers can also move into Boxes and structs

MOVED

Stack Heap

x 1
MOVEDy

z

Enforcing unique ownership simplifies the

heap

• The heap is a forest (set of trees), with allocated blobs of

memory as nodes, and owning references as arrows.

• Roots of the trees are on the stack:

o local variables of Box type

• If a local variable goes out of scope, that tree gets

deallocated

o We know that there are no other owners, because of

uniqueness of ownership

• Uniqueness of ownership is maintained with the move

semantics of pointers

Borrowing

• Move semantics is sometimes too limiting / annoying

• Rust supports “borrowing” of references to address this

ERROR

Borrowing

Stack Heap

x 1

Borrowing

Stack Heap

x

y

1

Borrowing

Stack Heap

x

y

1

Borrowing rules

• To avoid introducing temporal safety errors, borrowing and

ownership follow some rules:

o The lifetime of a borrow should always be included in

the lifetime of the owner from which it is borrowed

• Otherwise, if the owner dies, the borrowed reference would be

dangling

Borrowing should also forbid mutation

Stack Heap

data 1

1

1

len

cap

Borrowing should also forbid mutation

Stack Heap

data 1

1

1

len

cap

first

Borrowing should also forbid mutation

Stack Heap

data 1

2

2

len

cap

first 1

2

Borrowing should also forbid mutation

Stack Heap

data 1

2

2

len

cap

first 1

2

Borrowing rules

• Rust supports borrowing:

o Either: an arbitrary number of immutable references

o Or: a single mutable reference

• To ensure safety, Rust ensures:

o Modification through the owner is disallowed while

borrows are outstanding

o Lifetimes of borrowed references are always strictly

included in the lifetime of the owner

Summary: Ownership and borrowing

• Together these concepts:

o Can guarantee temporal memory safety statically

• By ruling out simultaneous aliasing + mutation

o Allow relatively flexible pointer manipulating programs

• Many advantages:

o No need for a run-time (no garbage collection)

o Also helps in avoiding data races (concurrency errors)

• Some disadvantages:

o Non-trivial to use

o Not as flexible as C

The Rust programming language

• Is one of the fastest growing languages at the moment

• The language has many other interesting features that we

did not discuss

o Pattern matching

o Traits

o Generics

o …

• See:

o https://www.rust-lang.org/

Overview

• Countermeasures of the future:

o Protected module architectures

• Fine grained isolation at machine code level

• Supported in the most recent Intel Skylake processors under the

name Intel Software Guard eXtentions (Intel SGX)

o Safe systems programming languages

• Compiled languages with low-level control over memory, but with

strong safety assurance

• Supported in the Rust programming language

o Advanced compiler based countermeasures

• Control-flow integrity (CFI)

• Pointer-based checking

74

Control-flow integrity

• Most low-level attacks break the control flow as it is

encoded in the source program

o E.g. At the source code level, one always expects a

function to return to its call site

• The idea of control-flow integrity is to instrument the code

to check the “sanity” of the control-flow at runtime

75

Remember the heap-based buffer overflow

• Example vulnerable program:

76

Example CFI at the source level

• The following code explicitly checks whether the cmp

function pointer points to one of two known functions:

77

General CFI

• In general, similar sanity checks can be done on any

computed control flow transfer

o Mainly: calls through function pointers, and returns

• The challenge is to do this

o Efficiently

o And precisely

• The original CFI determined a Control Flow Graph of the

program, and then inserted label-based checks

Example CFI with labels

79

Overview

• Countermeasures of the future:

o Protected module architectures

• Fine grained isolation at machine code level

• Supported in the most recent Intel Skylake processors under the

name Intel Software Guard eXtentions (Intel SGX)

o Safe systems programming languages

• Compiled languages with low-level control over memory, but with

strong safety assurance

• Supported in the Rust programming language

o Advanced compiler based countermeasures

• Control-flow integrity (CFI)

• Pointer-based checking

80

Pointer-based checking for C

• Challenging, because:

o For compatibility reasons, you should not change the

size of a pointer (so no fat pointers)

o Performance overhead should be low

• The most promising approach uses metadata about

pointers maintained in a disjoint metadata space

• For a detailed discussion, see:

o Santosh Nagarakatte, Milo M. K. Martin, Steve Zdancewic: Everything You

Want to Know About Pointer-Based Checking. SNAPL 2015

How does it work?

• For each pointer (i.e. each memory address), we maintain

metadata at run-time in a separate area of memory, e.g.:

o Base and bound information: what is the size of the

memory blob that this pointer is valid for?

o Lock and key information to detect temporal safety

issues

• Intel Memory Protection Extensions (Intel MPX) provides

hardware support for maintaining such metadata

o Currently only base and bound

Performance costs

• Software-only implementations:

o From a few percent up to 250% execution time

overhead

• Hardware-supported implementations:

o Approximately 20% execution time overhead

Conclusions

• Vulnerabilities in infrastructural systems software (operating systems,

servers, middleware) have been an important concern for security for

decades

• Memory safety related vulnerabilities are one of the most important

categories of vulnerabilities in systems software

• Decades of research are resulting in some interesting new approaches

to:

o Protect application modules from infrastructural software

o Prevent memory safety vulnerabilities through safe systems

programming language

o Comprehensively detect triggering of memory safety vulnerabilities

at run-time for C with reasonable performance

• If you are interested in following these developments more closely,

come talk to me about possible collaborations!

References

• J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C.

Huygens, B. Preneel, I. Verbauwhede, F. Piessens, Sancus: Low-

cost trustworthy extensible networked devices with a zero-

software trusted computing base, USENIX Security 2013

• P. Agten, R. Strackx, B. Jacobs, F. Piessens, Secure compilation to

modern processors, IEEE 25th Computer Security Foundations

Symposium (CSF 2012),

• https://software.intel.com/en-us/isa-extensions/intel-sgx

• https://www.rust-lang.org/

• U. Erlingsson, Y. Younan, F. Piessens, Low-level software security by

example, Handbook of Information and Communication Security, 2010

• S. Nagarakatte, M. M. K. Martin, S. Zdancewic: Everything You Want

to Know About Pointer-Based Checking. SNAPL 2015

https://lirias.kuleuven.be/bitstream/123456789/402673/3/paper.pdf
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://www.rust-lang.org/

